Groups

Group structure definition

Given a set G and +, a binary operation in G.
It is said that (G,+) is a Group when it verifies

  1. Asociative:  \( ((x+y)+z)=(x+(y+z)), \forall x,y,z \in G. \)
  2. Neutral element: \( \exists 0\in G : 0+x=x+0. \)
  3. Simmetrical element:  \( \forall x \in G, \exists -x\in G : x+(-x) = (-x) + x = 0. \)

In addition the group it is said to be conmutative or abelian if it verifies

$$ x+y=y+x, \forall x, y \in G. $$

Examples

  • \( (\mathbb{Z}, +)\)  is a conmutative or Abelian group.
  • \( (\mathbb{Q}, +)\) is a conmutative or Abelian group. Also \( (\mathbb{Q}^{*}, .)\)
  • \( (\mathbb{R}, +)\) is a conmutative or Abelian group. Also \( (\mathbb{R}^{*}, .)\)
  • \( (\mathbb{C}, +)\) is a conmutative or Abelian group. Also \( (\mathbb{C}^{*}, .)\)
  • Given a vector space V, then \( (\mathbb{V}, +)\) is an conmutative or Abelian group.

Subgroups

Lets G a Group, lets \( S \subset \) of G. It is said that S is a subgroup of G if S with the operation . restricted to S is a group.

Proposition
Lets G a group and S a subset of G, \(S\neq \varnothing\) then
S is a subgroup of G \( \Leftrightarrow a.b^{-1} \in S \forall a, b \in S \)

Proof
\(\Rightarrow \) \(a, b \in S \Rightarrow b^{-1} \in S \Rightarrow a, b^{-1} \in S \Rightarrow a.b^{-1} \in S.\)
\(\Leftarrow \) \(\exists x \in S \Rightarrow 1.x = x \in S \Rightarrow 1 \in S \Rightarrow 1. x^{-1} \in S \Rightarrow 1 \in S \)

When the group G is finite, the number of elements of G is called order of G and denoted |G|. In this case, there is an important theorem called Lagrange’s Theorem wich asserts the following:

LAGRANGE’S THEOREM
Given G group and S subgroup of G then
\( |G| = n |S| , n \in \mathbb{N}\)

In other simple words, the order of a subgroup divides the order of the group.

Corrollary
Given G group, if order of G=p prime, then the only subgroups of G are {1} and G.

These subgroups are called impropial subgroups.

Generated Subgroups

Any given subset S of a group (G,.), can generates a subgroup of G by operate over itself. This subgroup is denoted by <S>, ie
\(<S> = { x_{1}.x_{2}. … .x_{n} : x_{i} \in G } \).
When S is a finite subset, it is said that <S> is finitely generated.
When S is formed by only an unique element of F, ie, S={a}, it is said that <S> is cyclical.

0 comentarios

Dejar un comentario

¿Quieres unirte a la conversación?
Siéntete libre de contribuir!

Deja una respuesta