Entradas de] CARLOS PEÑAS

Diagonalización de matrices

Dado el endomorfismo:

 

\( \begin{matrix}
F:V\rightarrow V &
\\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x \in V \rightarrow F(x) = Ax\in V
\end{matrix} \)

 

Con V espacio vectorial de dimensión n>1 sobre el cuerpo Κ.

Ya hemos visto que para cada endomorfismo existe una matriz de dimensión nxn tal que

F(v) = Av

Dos matrices, A y B sobre el cuerpo K se dice que son semejantes si existe una matriz, también sobre el cuerpo K tal que

\( B=PAP^{-1} \)

Entonces una matriz A, es diagonalizable si es semejante a una matriz diagonal.

El polinómio característico de esta matriz se descompone en k raices \( \lambda_j \), cada una de ellas con multiplicidad (algebraica) \( m_k \) y tales que

\( \sum_{j=1}^{k}m_{j}\leq n \)

Es decir, la suma de las multiplicidades (algebraicas) es menor o igual que la dimensión del espacio V.

Si se tiene que si cada autovalor \( \lambda_j \) genera un autoespacio \( E(\lambda_{j}) \) con dimensión igual a la multiplicidad algebráica del autovalor, esto es con dimensión \( m_k \). En este caso A es una matriz diagonalizable (y también se dice que la aplicación F es diagonalizable).

En caso contrario, la suma de las dimensiones de los autoespacios generados por cada autovalor es menor que n, es decir, las bases de autovectores no llenan todo el espacio V. O dicho de otro modo alguno de los autoespacios \( E(\lambda_{j}) \) tiene dimension menor que la multiplicidad algebraica del autovalor. En este caso, la matriz no es diagonalizable pero sí es posible encontrar una base de V donde la matriz se expresa en una forma llamada canónica de Jordán.

 

 

Theorems on continuity and differentiability

Continuity We want to begin reminding continuity definition for real variabled functions: Continuity definition Lets f a real variabled function. It is said that f is continuous at \( x_{0} \) if $$ \forall \epsilon>0, \exists \delta > 0 : |x – x_{0}| < \delta \Rightarrow |f(x) – f(x_{0}) | < \epsilon .$$ Or equivalently […]

Integration

Riemman Integral Integral is the inverse operation to derivate. To integrate is in fact calculate an infinite sum and Geometrically for one variable functions, integration operation is the calculus of area located between the graph and the x-axis. For example, take the function \(f(x)=sin x\)
Calculate integral on an interval [a, b] is like to make a (big) sum. In our example \(f(x)=sin x\) we have taken the interval [-3,-3] and some h>0. So, we have partitioned te interval in n+1 points $$a, a+h, a+2h, …, a+nh=b.$$ We call $$x_{k}=a+kh \; \; \; \forall k: 0 \leq k\leq n$$ For each interval $$I_{k}=[x_{k},\; x_{k+1}] \; \; \; \forall k: 0 \leq k\leq n $$ we calculate the maximum of f over \(I_{k}\): $$M_{k}=max \{f(x): x \in I_{k}\}$$ and the minimumof f over \(I_{k}\): $$m_{k}=min \{f(x): x \in I_{k}\}$$. Note important: continuity if f over [a, b] guarantees that both, maximum and minimum exists. Then, we take two rectangles, both with some basis, \(I_{k}\), first one with height \(M_{k}\) and other one with height \(m_{k}\). The area of fisrt rectangle is \(A_{k}\), and the area of second one is \(a_{k}\), in other words: $$A_{k} = hM_{k}$$ $$a_{k} = hm_{k}$$ Finally, we take sum for both areas: $$S_{n}(f) = \sum_{k=0}^{n} A_{k} = \sum_{k=0}^{n} hM_{k} $$ $$s_{n}(f) = \sum_{k=0}^{n} a_{k} = \sum_{k=0}^{n} hm_{k} $$ We call to first sum the superior sums of f over [a, b], and inferior sums to the second one. Note that \(\forall n \in \mathbb{N} \) it is holds $$s_{n}(f) \leq \int_{a}^{b}f(x)dx \leq S_{n}(f)$$ The idea now is to take the infimum of superior sums and supreme of inferior sums, so we have the integral definition.
Riemann Integral definition Lets f a real variabled function.$$f:[a,b] \subset \mathbb{R} \rightarrow \mathbb{R}$$ f is integrable on interval [a, b] if infimum of superior sums is equal to supreme of inferior sums. $$sup \{s_{n}(f) : n \in \mathbb{N}\} = inf \{S_{n}(f) : n \in \mathbb{N}\}$$ It is called integral of f over interval [a, b] denoted by $$ \int_{a}^{b}f(x)dx $$ So: $$sup \{s_{n}(f) : n \in \mathbb{N}\} = \int_{a}^{b}f(x)dx = inf \{S_{n}(f) : n \in \mathbb{N}\}$$
Note 1 It is not necessary to make any hipotesses to f (boundness, continuity, etc …). Integral can exists or not, after, we will proof conditions on f to integral exist or not. Note 2 Boundness of f is not in fact any neccesary and nor sufficient condition for integral existence, as we will see in the example 2. Example 1 Let $$f(x)=\frac{1}{\sqrt x}$$ on interval \([0,1]\).
Note that $$f(x)=\frac{1}{\sqrt x} = x^{\frac{-1}{2}}$$ so $$ \int_{0}^{1}x^{\frac{-1}{2}}dx = \left.\begin{matrix}x^{\frac{1}{2}}\end{matrix}\right|_{0}^{1}. = 1.$$ (Yes yes, i know that before integral takes a constant, okay. But this is not important in this case, in fact you can suppose that it is there and its value = 0). On this case, f is unbounded on [0,1] but integral exists. Example 2 Let $$f(x)=\left\{\begin{matrix} 1 & x \in \mathbb{Q}\\ 0 & x \notin \mathbb{Q} & \end{matrix}\right.$$ on interval \([0,1]\). This function is not continuous at any \(x \in[0,1]\). It is not difficult to show that 1 is the valule for all superior sums and 0 is the value for all inferior sums. So, integral cannot exists. On this case, f is bounded on [0,1] but integral does not exists. To finish let me show a theorem on existence of integral
Theorem Lets $$f:[a, b]\subset \mathbb{R} \rightarrow \mathbb{R}$$ A real variabled, picewise continuous and bounded function, then f is integrable on interval [a,b], ie exists the number $$ \int_{a}^{b}f(x)dx $$
Note 1: Picewise continuous function means that function is continuous except any finite set of points into [a, b] interval. Note 2: Boundary of f is not a neccesary condition as we have shown in the example 1 (remember the \(f(x)=\frac{1}{\sqrt x}\) function at [0,1] interval). Itself is not a sufficient condition too, as shown in example 2, but continuity is a sufficient condition when joined the conditions of theorem.
Corollary Lets f $$f:[a, b]\subset \mathbb{R} \rightarrow \mathbb{R}$$ A continuous function, then f is integrable on interval [a,b], ie exists the number $$ \int_{a}^{b}f(x)dx $$

Derivate of a function

Derivates Lets f a continuous real variabled funcion, ie $$\begin{matrix} f: \mathbb{R} \rightarrow \mathbb{R}\\ \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; x \in \mathbb{R} \rightarrow y=f(x) \in\mathbb{R}\end{matrix}$$ We are interested in the instantaneous rate of change of function f in a given point \(x_{0}\). First, we […]

Limits & continuity

The limit concept The limit is one of more important concepts in calculus for analysis of functions. Definitions such of derivate and integral are based in this important concept. Shortly formally, the limit of a real variabled function f in a point a, is the value wich tends function when x tend to the point a. It mains […]

Groups

Group structure definition Given a set G and +, a binary operation in G. It is said that (G,+) is a Group when it verifies Asociative:  \( ((x+y)+z)=(x+(y+z)), \forall x,y,z \in G. \) Neutral element: \( \exists 0\in G : 0+x=x+0. \) Simmetrical element:  \( \forall x \in G, \exists -x\in G : x+(-x) = (-x) […]

Congruences

Two numbers \( a, b \in \mathbb{Z} \) are said to be congruents module p if $$a-b = np, n \in \mathbb{Z} . $$ In oher words, a and b are congruents if a minus b is a multiple of m. When a is congruent with b module p, we denote it as $$ a […]

Second grade formulae

Second grade formulae When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$ So, it is holds When \(b^2 = 4ac \Rightarrow \) equation has a unique real solution. When \(b^2 > 4ac \Rightarrow \) equation has two different […]